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Abstract

Indefinite kernel support vector machine (IKSVM) has re-
cently attracted increasing attentions in machine learning.
Different from traditional SVMs, IKSVM essentially is a
non-convex optimization problem. Some algorithms directly
change the spectrum of the indefinite kernel matrix at the cost
of losing some valuable information involved in the kernels
so as to transform the non-convex problem into a convex one.
Other algorithms aim to solve the dual form of IKSVM, but
suffer from the dual gap between the primal and dual prob-
lems in the case of indefinite kernels. In this paper, we di-
rectly focus on the non-convex primal form of IKSVM and
propose a novel algorithm termed as IKSVM-DC. According
to the characteristics of the spectrum for the indefinite kernel
matrix, IKSVM-DC decomposes the objective function into
the subtraction of two convex functions and thus reformulates
the primal problem as a difference of convex functions (DC)
programming which can be optimized by the DC algorith-
m (DCA). In order to accelerate convergence rate, IKSVM-
DC further combines the classical DCA with a line search
step along the descent direction at each iteration. A theoreti-
cal analysis is then presented to validate that IKSVM-DC can
converge to a local minimum. Systematical experiments on
real-world datasets demonstrate the superiority of IKSVM-
DC compared to state-of-the-art IKSVM related algorithms.

1 Introduction
Support vector machines (SVM) with kernels have been
successfully used in many application areas. In traditional
SVMs, the kernels embed samples into a high-dimensional
(possibly infinite-dimensional) feature space for linear sepa-
ration, where the corresponding kernel matrix is required to
be symmetric and positive semi-definite (PSD) (Cristianini
and Shawe-Taylor 2000). The PSD property guarantees that
the problem can be formulated as a convex quadratic pro-
gramming and yields a global optimum. However, in prac-
tice, many real-world applications directly utilize similarity
measures for the kernels, most of which are indefinite rather
than PSD. For example, Smith-Waterman and BLAST s-
cores for evaluating pair-wise similarity between protein se-
quences usually generate indefinite kernel matrices (Saigo et
al. 2004). The weighted meta-path based similarity matrices
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for text classification in natural language processing are fre-
quently indefinite (Wang et al. 2016). The sigmoid kernels in
neural networks with various values of the hyper-parameters
are also mostly indefinite (Vapnik 2013). As a result, indef-
inite kernels have become increasingly important in kernel
methods and indefinite kernel SVM (IKSVM) has attracted
more and more attentions in machine learning. However, d-
ifferent from the traditional SVMs, IKSVM boils down to a
non-convex optimization which is an NP-hard problem.

In the past few years, many algorithms have been pro-
posed to address the IKSVM problem. They generally fal-
l into two categories: (1) ”Kernel Transformation” which
transforms the indefinite kernel matrix to be PSD and (2)
”Non-convex Optimization” which solves the non-convex
problem directly. In the first category, some algorithms di-
rectly transform the eigenspectrum of the kernel matrix. For
example, ”Clip” neglects the negative eigenvalues (Pekals-
ka, Paclik, and Duin 2001), ”Flip” flips the sign of the nega-
tive eigenvalues (Graepel et al. 1999), and ”Shift” shifts al-
l the eigenvalues by a positive constant (Roth et al. 2003).
Other algorithms further consider the indefinite kernel as
a noisy observation of some unknown PSD kernel. Luss
and d’Aspremont presented a joint optimization on the d-
ual model of SVM with an additional regularization term
which measures the similarity between the proxy and the
original indefinite kernel matrices (Luss and d’Aspremont
2008). Chen and Ye reformulated the formulation into a
semi-infinite quadratically constrained linear programming
and proposed a faster algorithm (Chen and Ye 2008). Chen
et al. further introduced a primal model to avoid over-fitting
(Chen, Gupta, and Recht 2009). Gu and Guo incorporat-
ed the kernel principal component analysis into the SVM
classification and naturally generated a surrogate PSD ker-
nel (Gu and Guo 2012). However, these methods actually
change the indefinite kernels themselves and thus may lead
to the loss of some important information involved in the
kernels.

In the second category, most algorithms aim to solve the
non-convex dual form of IKSVM. For example, Lin and Lin
proposed an SMO-type method to solve the non-convex d-
ual formulation of IKSVM which can converge to some s-
tationary points for the non-PSD sigmoid kernel (Lin and
Lin 2003). Akoa incorporated difference of convex func-
tions programming into decomposition methods to tackle



IKSVM problems and obtained a stationary point as a so-
lution (Akoa 2008). Ong et al. extended IKSVM into a Re-
producing Kernel Kreı̌n Space (RKKS), in which they stabi-
lized the primal IKSVM model and reformulated it as a dual
optimization problem by decomposing the indefinite kernel
into the summation of two PSD kernels (Ong et al. 2004;
Loosli, Canu, and Ong 2016). Alabdulmohsin et al. trans-
ferred the indefinite kernel matrix into an affine constraint so
that the non-convex problem was converted into a linear pro-
gramming (Alabdulmohsin, Gao, and Zhang 2014). Howev-
er, these approaches either suffer from a dual gap between
the primal and dual problems of IKSVM or sacrifice opti-
mization performance and converge to a stationary point.

In this paper, we directly focus on the non-convex pri-
mal form of IKSVM and propose a novel algorithm named
IKSVM-DC. The algorithm firstly constructs the primal
problem as a difference of convex functions (DC) program-
ming equivalently, and then iteratively optimizes it by the D-
C algorithm (DCA). Furthermore, for speeding convergence
rate, IKSVM-DC adopts a line search along the descent di-
rection under the Armijo type rule at each iteration in classi-
cal DCA. A theoretical analysis is finally presented to vali-
date that IKSVM-DC can converge to a local minimum. Ex-
periments conducted on several real-world datasets demon-
strate that IKSVM-DC has not only much better classifica-
tion accuracy compared to some IKSVM related algorithms,
but also nearly three times higher convergence rate than the
classical DCA.

2 Related Work
Given a training set {(xi, yi)}ni=1, where xi ∈ X and yi ∈
{−1,+1}, the soft margin SVM classification is in the for-
mulation:

min
w,b,ξ

fp(w, b, ξ) = 〈w,w〉+ C

n∑
i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi
ξi ≥ 0, i = 1, · · · , n,

(1)

and the associated kernelized dual problem is

max
α

fd(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

s.t.
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, · · · , n,
(2)

where K(·, ·) is a kernel function. Then, the Lagrangian of
Eq. (1) is

L(w, b, ξ,α, ζ)

= fp(w, b, ξ)−
n∑
i=1

αi[yi(〈w, xi〉+ b)− 1 + ξi]−
n∑
i=1

ζiξi.

(3)

In the view of the primal and dual problems respectively,
Eq. (3) can be transformed into these two problems:

min
w,b,ξ

fp(w, b, ξ) = p∗ = min
w,b,ξ

max
α,ζ

L(w, b, ξ,α, ζ),

and
max
α

fd(α) = d∗ = max
α,ζ

min
w,b,ξ

L(w, b, ξ,α, ζ),

where p∗ and d∗ are the optimal solutions of the primal and
dual problems respectively.

Obviously, the relationship between the two optimal solu-
tions is

d∗ ≤ p∗.
The equality holds if and only if the kernel matrix generat-
ed fromK(·, ·) is PSD (Cristianini and Shawe-Taylor 2000).
When the kernels become indefinite, the equality would n-
ever hold and thus a dual gap exists between the primal and
dual problems.

However, many IKSVM algorithms still emphasize on
the dual problem. For example, proxy kernel algorithms ob-
tained a surrogate PSD kernel matrix for the indefinite ker-
nel directly based on the dual form of IKSVM (Luss and
d’Aspremont 2008; Chen and Ye 2008; Chen, Gupta, and
Recht 2009; Gu and Guo 2012). SMO-type algorithm pro-
posed an improved SMO method to solve the non-convex d-
ual form of IKSVM (Lin and Lin 2003). Akoa utilized differ-
ence of convex functions programming to solve non-convex
problems in decomposition methods, but the decomposition
methods are based on the dual form of IKSVM (Akoa 2008).
In order to avoid suffering from the dual gap, we will direct-
ly focus on the primal form of IKSVM in this paper.

3 Primal IKSVM Model
The primal problem of IKSVM has the same form as Eq. (1),
but the kernel becomes indefinite. So we firstly reformulate
Eq. (1) as an unconstrained optimization problem:

min
w,b

γ 〈w,w〉+

n∑
i=1

V (yi, 〈w, xi〉+ b), (4)

where the parameter γ = 1/C and V (·) is a loss function.
When the kernel is indefinite, we can solve Eq. (4) in a

wider RKKS K as

min
f∈K,b

γ 〈f ,f〉K +

n∑
i=1

V (yi,f(xi) + b). (5)

In RKKS, Ong et al. have verified that the Representer The-
orem still holds (Ong et al. 2004) and the solution to the
problem of minimizing a regularized risk function can be
expanded as

f∗ =

n∑
i=1

βiK(xi, ·),

where K is a kernel function in RKKS and the coefficient
βi ∈ R.

Consequently, considering the Representer Theorem in
RKKS, the primal model of IKSVM in Eq. (5) can be further
expressed as

min
β,b

γβTKβ +

n∑
i=1

V (yi,Kiβ + b), (6)

where K is the indefinite kernel matrix derived from asso-
ciated kernel function Kij = K(xi, xj) and Ki represents
the ith row of K. It is worth noting that the coefficient β
is not the same as the parameter α in Eq. (2), and thus the



coefficient β should not be interpreted as a Lagrange multi-
plier. In fact, the main difference between them is the value
range: the parameter α is required to be non-negative but
such requirement is inapplicable to the coefficient β. Fur-
thermore, for the solution β∗ of Eq. (6), the corresponding
support vector set is

SV s = {xi ∈ X s.t. V (yi,Kiβ∗ + b) 6= 0},

that is, the samples which let the loss function not equal to
zero.

In order to make the primal IKSVM model continuous-
ly differentiable in the variable β, we select the smooth
quadratic hinge loss function as V (·). So the optimization
problem in Eq. (6) after adding the scaling constant 1/2 be-
comes

min
β,b

1

2

[
γβTKβ +

n∑
i=1

max
(

0, 1− yi(Kiβ + b)
)2]

. (7)

Although much similar to the traditional primal PSD ker-
nel SVM, Eq. (7) is actually an unconstrained non-convex
optimization which has become an NP-hard problem in
terms of indefinite kernels.

4 IKSVM with DC
In this section, we further characterize the primal IKSVM
into a DC problem and then propose a novel algorithm to
solve it.

4.1 DC Programming
DC programming (Tao and An 1997; Dinh and Le Thi
2014) is a powerful tool for solving smooth/non-smooth
non-convex problems which can be decomposed into the for-
m of the subtraction of two convex functions. Concretely, the
corresponding objective function f can be formulated as

f(ω) = g(ω)− h(ω), (8)

where the variable ω ∈ Rn. The two functions g, h are
convex and lower semi-continuous on Rn. Let h∗(ψ) =
sup{〈ω,ψ〉 − h(ω),ω ∈ Rn} be the conjugate function
of h. The dual problem of Eq. (8) can be described as

f∗(ψ) = h∗(ψ)− g∗(ψ), (9)

where the conjugate variable ψ ∈ Rn. Due to the property
of conjugate dual, Eqs. (8) and (9) are equal to each other.
The variables ω and ψ satisfy

ψ ∈ ∂h(ω), ω ∈ ∂g∗(ψ), (10)

where ∂h and ∂g∗ denote the sub-gradients of h and g∗ re-
spectively. DC algorithm (DCA) further utilizes Eq. (10) to
linearize the concave parts−h and−g∗ of the two problems
and constructs two sequences {ωk} and {ψk} for solution-
s by solving the primal and dual problems alternately. The
performance of DCA is affected by three important choices
(Piot, Geist, and Pietquin 2014) : (1) the explicit choice of
the decomposition on f , (2) the choice of the starting point
ω0, (3) the choice of the intermediate convex solver. We will
discuss these choices detailedly in our algorithm in Section
5.1.

4.2 IKSVM Converted into a DC Problem
IKSVM can be converted into a DC problem due to the fa-
vorable property of the spectra for indefinite kernel matri-
ces, which involve valuable information in kernels. Firstly,
we denote the objective function of primal IKSVM as

f(β) =
1

2

[
γβTKβ +

n∑
i=1

max
(

0, 1− yi(Kiβ + b)
)2]

,

(11)
and the eigenspectrum of the indefinite kernel matrix can
be depicted as K = UTΛU , where U and Λ represent the
orthonormal column eigenvector matrix and the diagonal
eigenvalue matrix respectively, and Λ consists of both posi-
tive and negative eigenvalues. Then, we can easily get sev-
eral equivalent decompositions on Eq. (11) through shift-
ing the eigenspectrum of the indefinite kernels. In our al-
gorithm, we utilize the following two kinds of decomposi-
tions, that is, the objective function can be decomposed as
f(β) = g(β)− h(β) with

1©

g(β) = 1
2

[
γβTUT (ρ1I + Λ)Uβ + V

]
h(β) = 1

2
γβTUT (ρ1I)Uβ,

2©

g(β) = 1
2

[
γβTUT (ρ2I)Uβ + V

]
h(β) = 1

2
γβTUT (ρ2I − Λ)Uβ,

(12)

where V =
∑n
i=1 max(0, 1 − yi(Kiβ + b))2. The two

positive numbers ρ1 and ρ2 are chosen to guarantee that
the two functions g(β) and h(β) are convex functions, i.e.
ρ1 ≥ −min({λi}ni=1) and ρ2 ≥ max({λi}ni=1), and the set
{λi}ni=1 represents eigenvalues in the eigenvalue matrix Λ.

Given the decomposition of primal IKSVM model, we
can obtain the conjugate dual problem of function f(β), i.e.
minθ∈Rn{f∗(θ) = h∗(θ)− g∗(θ)}. According to the prop-
erty of DC programming in Eq. (10), we have

θ ∈ ∂h(β), β ∈ ∂g∗(θ). (13)

Utilizing Eq. (13), we can approximate the function h
with its affine minorization at point βt

h(β) = h(βt) + 〈β − βt,θt〉, (14)

where θt ∈ ∂h(βt). At point θt, the function g∗ of conju-
gate dual problem can be formulated as

g∗(θ) = g∗(θt) + 〈θ − θt,βt+1〉, (15)

where βt+1 ∈ ∂g∗(θt). As a result, the primal IKSVM
problem and its conjugate dual problem become convex af-
ter the transformation in Eqs. (14) and (15).

We further construct two sequences {βt} and {θt} for
solutions by solving Eq. (16) alternately{βt} = arg min {βt+1 : g(β)− 〈β,θt〉,β ∈ Rn}

{θt} = arg min {θt+1 : h∗(θ)− 〈θ,βt+1〉,θ ∈ Rn} .
(16)

Following (Dinh and Le Thi 2014), we omit the conjugate d-
ual problem with a simplified form θt ∈ ∂h(βt) in practice,



Algorithm 1 IKSVM-DC
Inputs:
D: the training set {xi, yi}ni=1 ∈ Rm × {±1}
γ: the regularization parameter
ῡ: the step size of Armijo Rule (ῡ > 0)
µ, η: the parameters of Armijo Rule (0 < µ < η < 1)
T : the maximize number of iterations
x∗: the unseen instance

Outputs:
y∗: the predicted class label for x∗

Process:
1: Initialize the kernel coefficient β0 and set t = 0;
2: Choose a DC decomposition: f(β) = g(β)− h(β);
3: while t < T do
4: Obtain a solution for conjugate dual problem: θt =

∇h(βt);
5: Solve the convex minimization problem in Eq. (17) to

obtain a solution βt+1 for primal IKSVM problem;
6: Set d(β) = βt+1 − βt;
7: if ‖d(β)‖2 ≤ δ then
8: IKSVM-DC converges to a local minimum and

break;
9: end if

10: Set υt = ῡ;
11: while f(βt+1 + υtd(β)) > f(βt+1) − µυt‖d(β)‖2

do
12: υt = ηυt;
13: end while
14: Update the solution of IKSVM: βt+1 = βt+1 +

υtd(β) and set t = t+ 1;
15: end while
16: return y∗ = sign(K(x∗, x)β + b);

and obtainθt ∈ ∂h(βt)

βt+1 ∈ arg minβ∈Rn g(β)− 〈β,θt〉.
(17)

The sequence {βt} can generate a descent direction at
each iteration. In order to accelerate the convergence rate,
we can search the smallest non-negative integer lt under
the Armijo type rule along the direction to achieve a larg-
er reduction in the value of f (Artacho, Fleming, and Vuong
2015)

f(βt+1 + ηltd(β)) ≤ f(βt+1)− µηlt‖d(β)‖2.
Algorithm 1 summarizes the procedure of our algorith-

m IKSVM-DC. Given the training set, a DC decomposition
is chosen to formulate the primal IKSVM into a DC prob-
lem (Step 2). After that, an iterative DC algorithm is per-
formed to obtain the solutions for primal IKSVM problem
and its conjugate dual problem (Steps 4-9). Meanwhile, a
line search step is conducted to accelerate the convergence
of IKSVM-DC (Steps 10-14). Finally, the unseen instance is
classified based on the solutions (Step 16).

4.3 Convergence Analysis
In this section, we will present a theoretical analysis for the
convergence of IKSVM-DC.

Proposition 1. For the sequence {βt}, we have

(g − h)(βt)− (g − h)(βt+1) ≥ τ‖d(β)‖2,

the equality holds if and only if τ‖d(β)‖2 = 0, where τ
is a positive parameter to make functions g and h strongly
convex.

Proof. Firstly, we can construct the the convex functions
g, h as being strongly convex with an additional term τ

2β
2 :

(g − h)(β) =
(
g(β) +

τ

2
β2
)

︸ ︷︷ ︸
G(β)

−
(
h(β) +

τ

2
β2
)

︸ ︷︷ ︸
H(β)

.

Then given the convexity of function G, we have

G(βt) ≥ G(βt+1) +∇G(βt+1)(βt − βt+1).

After simplified, we get

g(βt) ≥ g(βt+1) + 〈∇g(βt+1),βt − βt+1〉+
τ

2
‖βt − βt+1‖2.

(18)
Similarly, for the function H , we can get

H(βt+1) ≥ H(βt) +∇H(βt)(βt+1 − βt),

h(βt+1) ≥ h(βt) + 〈∇h(βt),βt+1 − βt〉+
τ

2
‖βt+1 − βt‖2.

(19)
Since βt+1 is a unique solution of the convex problem in

Eq. (17), we have

∇g(βt+1) = θt = ∇h(βt). (20)

Combining Eqs. (18), (19) and (20), we have

(g(βt)− h(βt))− (g(βt+1)− h(βt+1)) ≥ τ‖βt+1 − βt‖2.

Proposition 1 presents that IKSVM-DC can decrease the
value of objective function at each iteration and further pro-
vides a condition ‖d(β)‖2 = 0 for the convergence to
IKSVM-DC. Proposition 2 verifies that d(β) = βt+1 − βt
is a descent direction for f at βt+1 and thus we can conduct
a line search along the direction in IKSVM-DC to further
decrease the value of objective function.
Proposition 2. For the sequence {βt}, we have

〈∇(g − h)(βt+1),βt+1 − βt〉 ≤ 0,

that is, d(β) = βt+1−βt is a descent direction for f = g−h
at βt+1.

Proof. Following Proposition 1, we have

h(βt) ≥ h(βt+1) + 〈∇h(βt+1),βt − βt+1〉+
τ

2
‖βt −βt+1‖2.

(21)
Then the derivation of Eq. (21) at βt yields

∇h(βt)−∇h(βt+1) ≥ τ‖βt − βt+1‖.
Further, we get

〈∇h(βt)−∇h(βt+1),βt − βt+1 ≥ τ‖βt − βt+1‖2.
Combining Eq. (20), we have

〈∇g(βt+1)−∇h(βt+1),βt+1 − βt〉 ≤ −τ‖d(β)‖2 ≤ 0,

the equality holds if and only if τ‖d(β)‖2 = 0.



Based on Propositions 1 and 2, we can further validate
that IKSVM-DC can converge to a local optimum.
Theorem 1. If the sequence {βt} satisfies d(β) = βt+1 −
βt = 0, let β∗ = βt+1 = βt and U be a neighbourhood of
β∗. For ∀β ∈ U , we have

g(β)− h(β) ≥ g(β∗)− h(β∗).

Proof. Following Eq. (20), the condition d(β) = βt+1 −
βt = 0 implies ∇g(β∗) = ∇g(βt+1) = θt, that is, ∃θ ∈
∂g(β∗). So the conjugate function of g at β∗ is

g∗(θ) = sup{〈β∗,θ〉 − g(β∗)} = 〈β∗,θ〉 − g(β∗), (22)

and ∀θ ∈ Rn, the conjugate function of h at β∗ is

h∗(θ) = sup{〈β∗,θ〉 − h(β∗)} ≥ 〈β∗,θ〉 − h(β∗). (23)

Combining Eqs. (22) and (23), we have

g(β∗) + g∗(θ) = 〈β∗,θ〉 ≤ h(β∗) + h∗(θ). (24)

On the other hand, since θ = ∇h(β), it means ∃θ ∈
∂h(β). Similar to the process in Eqs. (22), (23) and (24), we
have

h(β) + h∗(θ) = 〈β,θ〉 ≤ g(β) + g∗(θ). (25)

Combining Eqs. (24) and (25), we can reach the conclu-
sion.

5 Experiments
In this section, we experimentally evaluate the performance
of the proposed algorithm IKSVM-DC compared with sev-
eral related algorithms using a collection of datasets on the
benchmark.

5.1 Experimental Setup
In the experiments, ten real-world datasets are used for
learning IKSVMs, including two datasets Ionosphere and
Sonar from UCI Machine Learning Repository (Blake
and Merz 1998), four datasets Titanic, Breast − cancer,
Thyroid and Flare − solar from IDA database (Rätsch,
Onoda, and Müller 2001), and the rest four dissimilarity
datasets are Balls3D, WoodyP lants50, CoilY ork and
Zongker provided by the Pattern Recognition Lab of Delft
University of Technology (Duin 2000). Table 1 lists a brief
description of these ten datasets and the corresponding sim-
ilarity measures.

For the UCI and IDA datasets, we randomly divide the
samples into two non-overlapping training and testing sets
which contain almost half of the samples in each class. For
the four dissimilarity datasets, we extract half of the points
from the dissimilarity matrix for training set and the rest for
testing set. The processes are repeated ten times to gener-
ate ten independent epoches for each dataset, and then the
average results are reported.

For all the datasets, we choose the regularization pa-
rameter γ and the parameters in sigmoid kernels by ten-
fold cross-validation on the training set from the set
{2−6, 2−5, · · · , 25, 26}.

As IKSVM-DC is a quadratic programming without con-
straints, we utilize the interior-point optimizer to solve it by
Mosek optimization software (Mosek 2010). Moreover, s-
ince the variable β ∈ Rn can be negative, we randomly

Table 1: Datasets description.
dataset(abbreviation) #num(#class) φ1 measure

Ionosphere(Ion.) 351(2) 0.340 sigmoid kernel
Sonar(Son.) 208(2) 0.290 sigmoid kernel
Titanic(Tit.) 2201(2) 0.261 sigmoid kernel
Breast-cancer(Bre.) 277(2) 0.718 sigmoid kernel
Thyroid(Thy.) 215(2) 0.470 sigmoid kernel
Flare-solar(Fla.) 1066(2) 0.211 sigmoid kernel
Balls3D(Bal.) 200(2) 0.500 distance on 3-D balls
WoodyPlants50(Woo.) 791(14) 0.500 leaves shape matching
CoilYork(Coi.) 288(4) 0.500 graph matching
Zongker(Zon.) 2000(10) 0.120 handwritten digits matching

initialize β0 ∈ [−1,+1]. As a result, considering the three
factors of DCA described above, we only need to take the
decomposition of f into consideration in the experiments,
which is depicted in Eq. (12).

We compare IKSVM-DC with several state-of-the-art
IKSVM algorithms including:
• ”Clip”, ”Flip” and ”Shift” (Wu, Chang, and Zhang 2005):

three methods directly change the eigenspectrum to obtain
a PSD kernel matrix, and take the modified PSD kernel
into a dual form of SVM.

• SMO-IKSVM (Lin and Lin 2003): a method utilizes the
SMO-type algorithm to solve the dual form of IKSVM.

• TDCASVM (Akoa 2008): a method uses DC algorithm to
solve non-convex dual problems in decomposition meth-
ods.

• IKSVM-CA (Gu and Guo 2012): a method iteratively
achieves a low dimensional representation PSD kernel
matrix for the indefinite kernel, and solves the dual for-
m of SVM with the PSD kernel matrix.

• ESVM (Loosli, Canu, and Ong 2016): a method trans-
forms the indefinite kernel from Kreı̌n spaces into Hilbert
spaces, and trains the convex dual form of SVM.

• 1-norm IKSVM (Alabdulmohsin, Gao, and Zhang 2014):
a method imposes the coefficients of kernel function-
s to be non-negative in 1-norm IKSVM, and tackles the
convex problem by Mosek optimization software (Mosek
2010).
The dual problem of SVM/IKSVM in the algorithms

above is all solved by the LIBSVM library (Chang and Lin
2011).

5.2 Experimental Results
Table 2 reports the performance of each compared algorith-
m on the real-world datasets, where the mean classification
accuracies as well as the standard deviations of each algo-
rithm are recorded and the best results are highlighted in
bold. Furthermore, to statistically measure the significance
of performance difference, pairwise t-test at 0.05 signifi-
cance level is conducted between the algorithms. Specifical-
ly, when IKSVM-DC is significantly superior/inferior to the

1φ =
∑n

i=1 |λi|·I{λi<0}∑n
i=1 |λi|

represents the measure of indefinite-
ness for the datasets.



Table 2: Classification accuracy (mean±std. deviation) of each compared algorithm on several real-world datasets. In addition,
•/◦ indicates whether IKSVM-DC is statistically superior/inferior to the compared algorithm on each dataset (pairwise t-test
at 0.05 significance level).

Clip Flip Shift SMO-IKSVM TDCASVM IKSVM-CA ESVM 1-norm IKSVM IKSVM-DC
Ion. 0.737±0.104• 0.759±0.086• 0.677±0.055• 0.731±0.108• 0.749±0.047• 0.865±0.057• 0.886±0.020• 0.919±0.016• 0.936±0.011
Son. 0.676±0.062• 0.689±0.017• 0.658±0.047• 0.649±0.068• 0.638±0.072• 0.758±0.030• 0.734±0.027• 0.792±0.030• 0.848±0.023
Tit. 0.736±0.068• 0.774±0.009• 0.717±0.071• 0.744±0.051• 0.736±0.043• 0.788±0.005 0.788±0.005 0.787±0.005• 0.791±0.004
Bre. 0.731±0.022• 0.736±0.023• 0.713±0.007• 0.727±0.020• 0.741±0.022• 0.375±0.395• 0.734±0.027• 0.738±0.026• 0.783±0.015
Thy. 0.899±0.039• 0.921±0.036• 0.757±0.074• 0.872±0.041• 0.877±0.057• 0.940±0.025• 0.927±0.051• 0.941±0.034• 0.977±0.019
Fla. 0.604±0.052• 0.589±0.050• 0.553±0.000• 0.588±0.049• 0.569±0.026• 0.664±0.039 0.632±0.055• 0.623±0.059• 0.681±0.013
Bal. 0.478±0.055• 0.471±0.031• 0.482±0.053• 0.499±0.035• 0.558±0.016• 0.513±0.040• 0.536±0.029• 0.546±0.044• 0.570±0.031
Woo. 0.263±0.043• 0.183±0.022• 0.356±0.074• 0.331±0.035• 0.499±0.001• 0.574±0.021• 0.923±0.012 0.721±0.019• 0.924±0.010
Coi. 0.293±0.028• 0.258±0.018• 0.319±0.021• 0.485±0.048• 0.480±0.047• 0.584±0.037• 0.638±0.054• 0.669±0.021• 0.731±0.044
Zon. 0.641±0.029• 0.645±0.023• 0.641±0.018• 0.645±0.048• 0.582±0.058• 0.558±0.023• 0.662±0.059• 0.622±0.019• 0.818±0.033
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Figure 1: Convergence of IKSVM-DC on five datasets.

compared algorithm on any dataset, a marker •/◦ is shown.
Otherwise, no marker is given (Zhang and Zhou 2013).

We conduct experiments on the two kinds of decomposi-
tions, and the classification accuracies of these two decom-
positions are comparable which means IKSVM-DC is ro-
bust for the decomposition factor. Thus we choose the high-
er classification accuracy as the final result to show in Ta-
ble 2. It is impressive that IKSVM-DC outperforms all the
algorithms on the ten datasets. Among the eight algorithm-
s, three spectrum transformation methods obtain the lowest
classification accuracies on seven of the ten datasets. SMO-
IKSVM and TDCASVM achieve similar results to three
spectrum transformation methods. IKSVM-CA slightly ex-
cels the spectrum transformation methods on eight dataset-
s. But it has too much parameters to tune and would fail
when the number of positive eigenvalues is very small (i.e.
the Breast− cancer dataset). ESVM exceeds IKSVM-CA
on six of the ten datasets yet is worse than 1-norm IKSVM
on most of these datasets. Our algorithm IKSVM-DC is su-
perior to 1-norm IKSVM on all the datasets.

The experiments about the convergence of IKSVM-
DC are conducted on five datasets Ionosphere, Sonar,
Flare − solar, Balls3D and CoilY ork. We plot the val-
ue ‖d(β)‖2 = ‖βt+1 − βt‖2 of the solution sequence {βt}
during the iterations, as shown in Figure 1. We can see that
the value ‖d(β)‖2 gradually converges in a few iterations on
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Figure 2: Different performance between IKSVM-DC with
and without a line search step on the dataset Flare− solar.

the five datasets.
Figure 2 demonstrates the different performance between

IKSVM-DC with and without a line search step on the
dataset Flare − solar. We can see that the algorithm
IKSVM-DC with a line search step would gain a smaller
value of objective function during the iterations and nearly
three times faster than the algorithm without a line search
step to obtain the same value of objective function. It illus-
trates that doing a line search along the descent direction at
each iteration is very efficient.

Furthermore, the computational cost of the five method-
s Shift, SMO-IKSVM, TDCASVM, 1-norm IKSVM and
IKSVM-DC is O(n2), while other four methods is O(n3)
which is caused by spectral decomposition or inversion
of the kernel matrix K ∈ Rn×n. Fortunately, although
our method IKSVM-DC also involves spectral decomposi-
tion, only the minimum eigenvalue of the kernel matrix is
necessary, and we adopt a low cost method (Wu, Chang,
and Zhang 2005) to estimate such a ρ that satisfies ρ ≥
−min({λi}ni=1) in actual implementation. Thus, IKSVM-
DC is comparable to other algorithms on computational cost.

6 Conclusion
Instead of employing the dual form of IKSVM, we direct-
ly focus on the primal form in this paper. Considering the



characteristics of the spectrum for the indefinite kernels, we
transform the non-convex primal IKSVM problem into a
formulation of DC equivalently, and propose an algorithm
IKSVM-DC to obtain a local minimum for it. Furthermore,
in order to accelerate the convergence rate of IKSVM-DC,
we conduct a line search along the descent direction at each
iteration. Extensive comparative experiments validate the ef-
fectiveness of our algorithm IKSVM-DC.
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